

Relationship of Body Composition and Physical Fitness with Injury Risks in the Military

Joseph Pierce, Ph.D.

Defense Health Agency Public Health, Injury Prevention Branch PMO 655 Current Issues in Safety and Injury Prevention, January 2025

The views expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy of the Department of Defense, Defense Health Agency, or the U.S. Government.

The mention of any non-federal entity and/or its products is for informational purposes only, and is not to be construed or interpreted, in any manner, as federal endorsement of that non-federal entity or its products.

Talk Overview

- Background on body composition and physical fitness in the U.S. Military:
 - Why are these factors important to the Military/Army?
 - How does the Army assess these two factors?
- Describe trends in body composition and physical fitness (or performance) in the Military.
 - How do these two factors interact with each other?
- Describe major injury types (acute and overuse musculoskeletal injuries) observed in the Army.
- Learn about how body composition and fitness influence injury risk:
 - Independent relationships
 - Interactions between these two factors

Department of Defense Instruction (DoDI) 1308.03

DOD INSTRUCTION 1308.03

DOD PHYSICAL FITNESS/BODY COMPOSITION PROGRAM

Originating Component:	Office of the Under Secretary of Defense for Personnel and Readiness
Effective:	March 10, 2022
Releasability:	Cleared for public release. Available on the Directives Division Website at https://www.esd.whs.mil/DD/.
Reissues and Cancels:	DoD Instruction 1308.3, "DoD Physical Fitness and Body Fat Programs Procedures," November 5, 2002
Incorporates and Cancels:	DoD Directive 1308.1, "DoD Physical Fitness and Body Fat Program," June 30, 2004 DoD Directive 1308.2, "Joint DoD Committee on Fitness," February 4, 2005

DoDI 1308.03 Main Points

- Establishes policy, assigns responsibilities, and prescribes procedures governing Service physical fitness/body composition standards for the Military Services.
- The Military Services will design, implement, supervise, and tailor physical fitness/body composition programs to suit the particular needs and mission of their respective Military Service, consistent with established scientific principles of physical training.
- When using weight-for-height screening tables:
 - Allowable body mass index (BMI) equivalents: Men: 19 27.5 kg/m²; Women: 19 26 kg/m²
- When using body fat calculations:
 - Allowable body fat: Men: 18 26%; Women: 26 36%

Major Updates for DoDI 1308.03

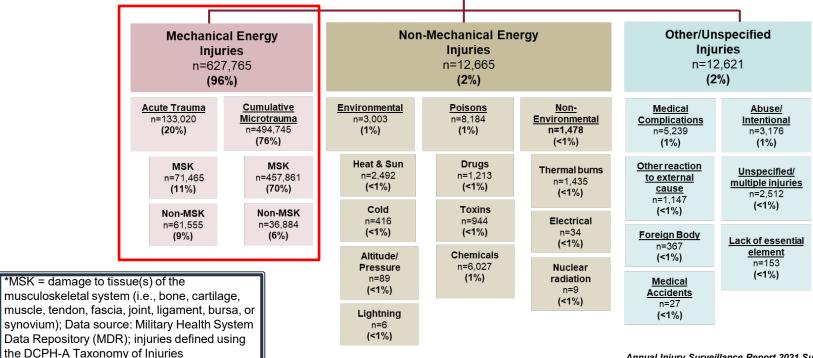
- Body composition may be evaluated using either **body fat calculations**, **waist-to-height ratio**, **abdominal circumference**, **height-weight screening**, **or any combination thereof**.
- Service determination of body composition relying on abdominal or waist circumference will use evidence-based reference indexes corrected for height that are not biased against short or tall Service members.
- Scientific data may be used to further adjust body fat standards within the DoD acceptable range, develop screening procedures, or to prescribe procedures compensating for high levels of fitness.
- The Military Services will **submit an "Annual Service Physical Fitness/Body Composition Report**" to the ASD(HA) and the ASD(M&RA), no later than June 1 each year.
 - Report takes into account physical fitness, body composition, and MSK injuries

Injury Definition Added to Help Guide DoDI Reporting

 MSK injuries will be identified using current International Classification of Diseases taxonomically-defined injury diagnoses categories that separate acute traumatic injuries and cumulative microtraumatic (overuse) injuries.

TERM DEFINITION

injury


Damage caused by the transfer of an external mechanical, chemical, electrical, or radiological energy to the body. Most injuries are from mechanical energy transfer that results from either an abrupt high intensity force (acute traumatic injury) or a repetitive lower intensity force (cumulative microtraumatic injury, often referred to as an overuse injury). Most military injuries are to the MSK system and the majority of those are cumulative microtraumatic injuries attributed to physical training activities.

Taxonomy of U.S. Army Soldier Incident Injuries (2021)

ALL ACTIVE DUTY ARMY INITIAL INJURIES, N = 653,051

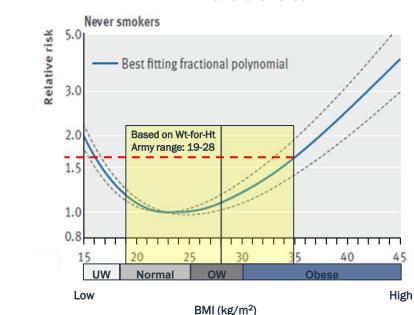
Annual Injury Surveillance Report 2021 Summary, TIP NO. 12-123-0123.

Military Body Composition

Body Composition Modeling and Assessment Methods

- Simplest two-compartment model:
 - Fat-free mass
 - Fat mass
- Most common assessment methods:
- Simple/inexpensive

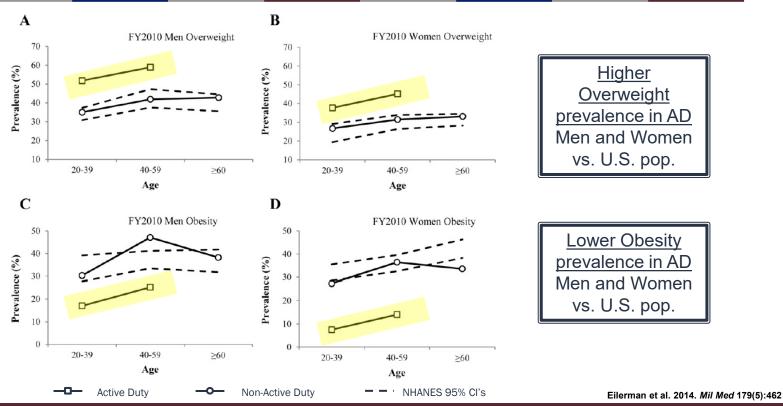
Complex/expensive


(most accurate)

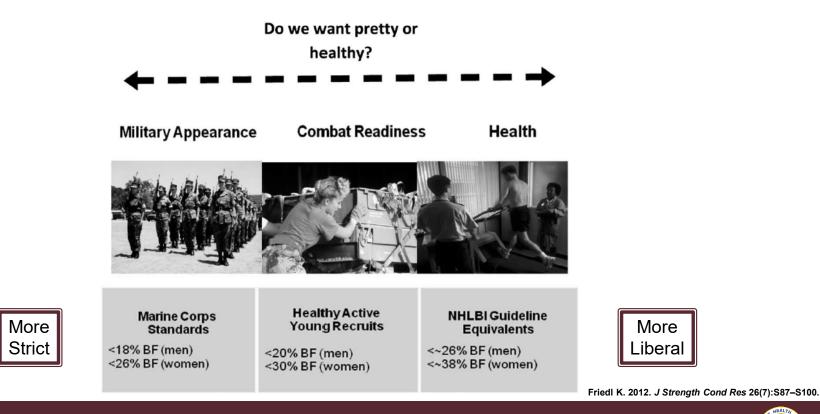
- BMI (adiposity estimation only: normal weight/overweight/obese)
- Tape testing/circumference measurements (e.g., abdominal circumference, waist:hip ratio, etc.)
- Skinfolds
- Bioelectrical impedance analysis (BIA)
- Air displacement plethysmography (BodPod)
- Underwater weighing/hydrodensitometry
- Dual-energy x-ray absorptiometry (DEXA) (Gold standard)

BMI Categories and Health Risk

BMI range (kg/m²)	Weight Classification			
< 18.5	Underweight			
18.5-24.9	Normal weight			
25.0-29.9	Overweight			
≥ 30.0	Obese			

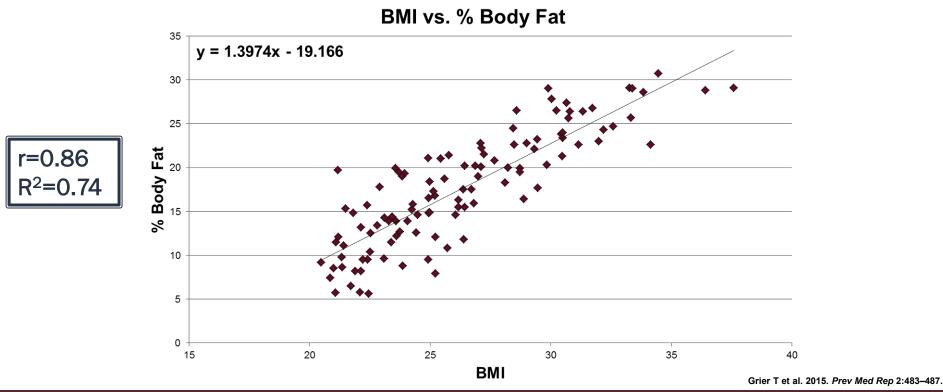

Figure adapted from: Aune, D., et al., BMJ, 353 (2156): 1-17, 2016

Improving Health and Building Readiness. Anytime, Anywhere — Always


11

Military Trends in Overweight and Obesity Prevalence Against General U.S. Population (2010)

Body Composition Standards Vary Among Service Branches



Army Body Composition Program (ABCP): AR 600-9

Army Regulation 600–9	Soldier's height and weight measured every 6 months
Personnel-General	
The Army Body Composition Program	Meets weight-for-height (Body Mass Index (BMI)) equivalent standard no further actionExceeds weight-for-height standard body fat percent determined using circumference-based tape test <u>Men</u> : neck and abdomen
	Meets body fat standards, no further action Exceeds body fat standards: Soldier flagged and enrolled in the unit ABCP

Correlation Between BMI and %Body Fat (DEXA)

Relationships Between BMI and Body Composition

As BMI increased (particularly ≥ 27.5 kg/m²), Soldiers exhibited greater increases in body fat mass than lean body mass.

BMI (kg/m²)	n	Lean Body Mass (kg)*	Difference calculated from total body weight	Fat Mass (kg)*	Difference calculated from total body weight	Body Fat (%)*
< 25	49	58.1 ± 6.2		9.1 ± 3.3		12.7 ± 4.1 %
25 – 27.49	23	63.6 ± 4.7	+5.5 kg (7%)	14.1 ± 3.7	+5 kg (6%)	17.2 ± 3.9 %
27.5 – 29.9	15	65.6 ± 4.5	+7.5 kg (9%)	19.1 ± 3.0	+10 kg (12%)	21.6 ± 3.4 %
30+	23	70.2 ± 5.6	+12.1 kg (13%)	26.1 ± 3.9	+17 kg (18%)	25.2 ± 3.5 %

*Lean body mass, fat mass, and % body fat assessed by DEXA

Grier T et al. 2015. Prev Med Rep 2:483-487.

Waist Circumference Without Height Adjustment Problems

	Waist C	st Circ. (cm) Body		Body fat (%) BMI (kg/m²)		
Height Group Stratification	Men	Women	Men	Women	Men	Woman
Group 1 Men: 162.6 – 167.6 cm (n=95) Women: 149.9 – 154.9 cm (n=22)	84.3 ± 8.4ª	78.5 ± 8.4 ª	21.0 ± 4.3	33.2 ± 4.9	26.8 ± 3.6	25.9 ± 3.5
Group 2 Men: 170.2 – 175.3 cm (n=280) Women: 157.5 – 162.6 cm (n=71)	87.4 ± 8.9 ^b	80.0 ± 8.4 ª	20.8 ± 4.6	32.5 ± 4.8	26.8 ± 3.6	25.3 ± 3.4
Group 3 Men: 177.8 – 182.9 cm (n=270) Women: 165.1 – 170.2 cm (n=55)	88.9 ± 8.9 ^{b,c}	81.4 ± 9.6 ^{a,c}	20.6 ± 4.5	32.6 ± 5.5	26.6 ± 3.7	25.4 ± 4.1
Group 4 Men: 185.4 – 190.5 cm (n=99) Women: 172.7 – 180.3 cm (n=17)	92.7 ± 9.6 ^d	86.1 ± 9.0 ^{b,c}	20.8 ± 4.5	33.5 ± 4.6	26.9 ± 3.8	25.9 ± 3.7
ANOVA p-value	0.001*	0.043*	0.716	0.858	0.747	0.883

A waist circumference standard, uncorrected for height, is biased against taller individuals and should not be used as a body composition standard.

Unclassified data observations from paper in prep

17

Military Physical Fitness

Army Physical Fitness Test (APFT)

- Established since early 1980s
- 3-event test administered every 6 months that assessed health-based fitness attributes:
 - Muscular Endurance
 - Push-ups in 2 minutes
 - Sit-ups in 2 minutes
 - Cardiorespiratory Endurance
 - Timed 2-Mile Run
- Raw performance for each event (repetitions, time) converted into a sexand age-adjusted (5-yr age groups) score
 - Passing: at least 60 points on each event, 180 total points
 - Each event has maximum 100 points
- Disadvantages:
 - Not specifically tied to combat-related fitness attributes
 - No basis for discriminating occupational fitness

DVIDS: 170506-A-ZU930-006A

Interactions Between Body Composition and Physical Fitness

- Trade-offs exist between body composition and different domains of physical fitness or performance:
 - Moving one's own body mass through space
 - Advantage to have lighter body mass, lower BMI/body fat
 - Ex: Distance runs, sprints, agility drills, etc.
 - Moving an external mass through space
 - Advantage to have more body mass and lean mass, higher BMI/body fat
 - Ex: Deadlifts, bench press, medicine ball power throw, etc.

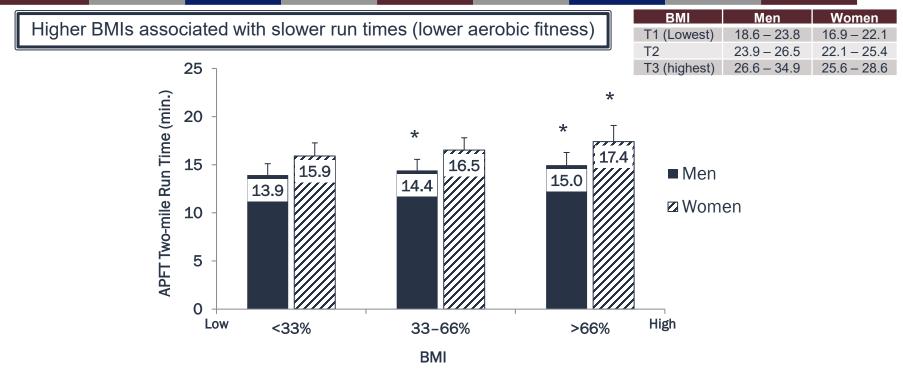
20

Average APFT Points by Passing vs. Failing ABCP Screening Standards

		Pass ABCP Screening Standards Men (n=183); Women (n=30)	Fail ABCP Screening Standards Men (n=92); Women (n=16)	p-value
	APFT Push-ups			
	Men	89.5 ± 11.5	88.0 ± 11.1	0.30
	Women	93.6 ± 9.4	85.4 ± 14.1 *	0.049
ABCP = Army Body	APFT Sit-ups			
Composition	Men	85.9 ± 12.1	85.2 ± 12.7	0.67
Program	Women	85.9 ± 13.3	73.8 ± 9.8 *	<0.01
	APFT Two-mile Run			
	Men	84.4 ± 12.5	78.2 ± 16.2 *	<0.01
	Women	90.5 ± 9.8	80.4 ± 15.1 *	0.03
	APFT Total Points			
	Men	259.8 ± 27.8	251.4 ± 30.8 *	0.03
	Women	270.0 ± 24.0	239.6 ± 31.4 *	<0.01

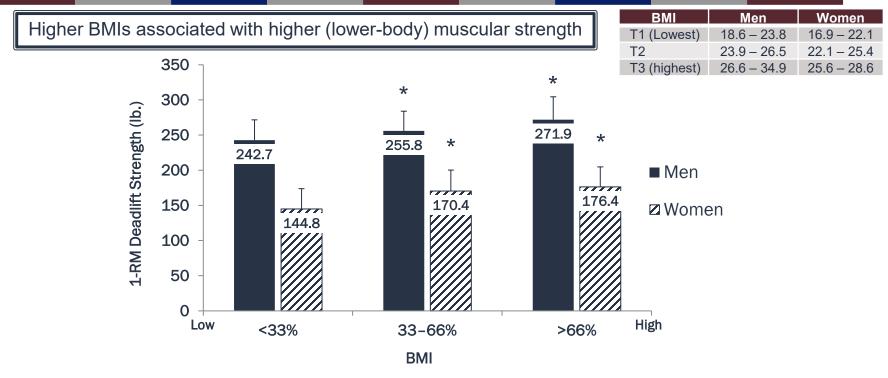
Data are sex- and age- adjusted APFT points (mean ± SD); *P ≤ 0.05 vs. Pass ABCP Screening Standards Group

• Failing ABCP screening standards did not largely impact Soldiers' ability to pass the APFT.


• ~6% would fail the APFT if they failed ABCP screening standards; data not shown.

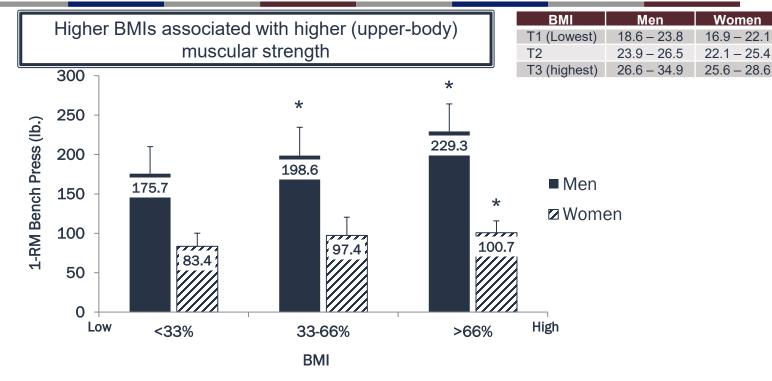
Pierce J et al. 2017. JSAMS 20(Suppl 4):S79-S84.

Aerobic Performance (2-mile Run Time) by BMI Tertiles


Data are mean ± SD; *P≤0.05 vs. tertile 1 (T1) (<33%)

Pierce J et al. 2017. JSAMS 20(Suppl 4):S79-S84.

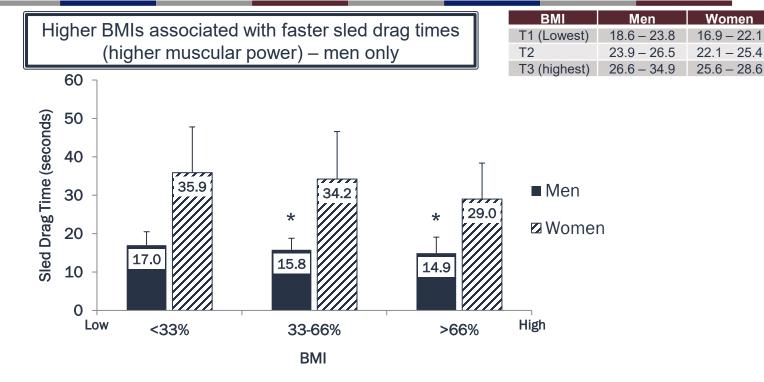
Muscular Strength (Lower-body) by BMI Tertiles



Data are mean ± SD; *P≤0.05 vs. tertile 1 (T1) (<33%)

Pierce J et al. 2017. JSAMS 20(Suppl 4):S79-S84.

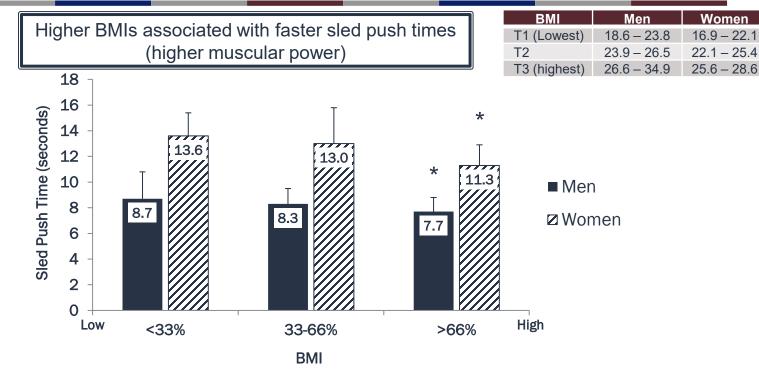
Muscular Strength (Upper-body) by BMI Tertiles



Data are mean ± SD; *P≤0.05 vs. tertile 1 (T1) (<33%)

Pierce J et al. 2017. JSAMS 20(Suppl 4):S79-S84.

Muscular Power (Sled Drag) by BMI Tertiles



Data are mean ± SD; *P≤0.05 vs. tertile 1 (T1) (<33%)

Pierce J et al. 2017. JSAMS 20(Suppl 4):S79-S84.

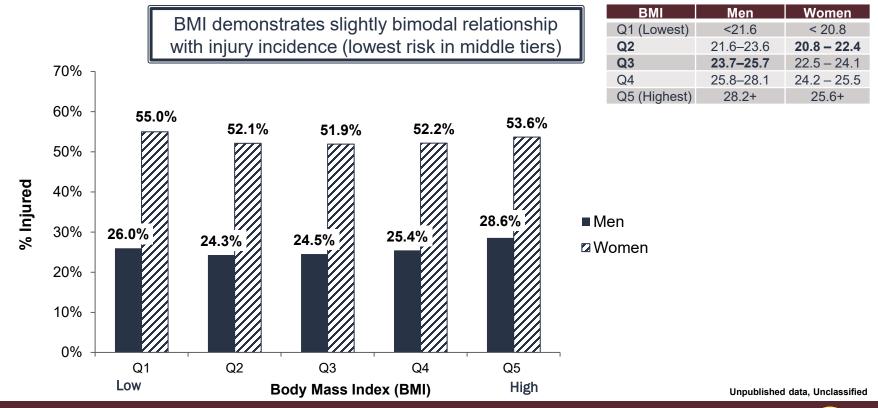
Muscular Power (Sled Push) by BMI Tertiles

Data are mean ± SD; *P≤0.05 vs. tertile 1 (T1) (<33%)

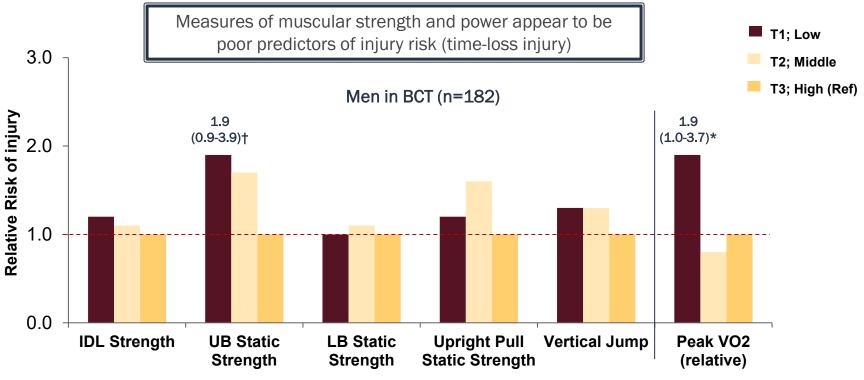
Pierce J et al. 2017. JSAMS 20(Suppl 4):S79-S84.

Body Composition and Physical Fitness Influences on Injuries

Taxonomy of U.S. Army Soldier Incident Injuries (2021)

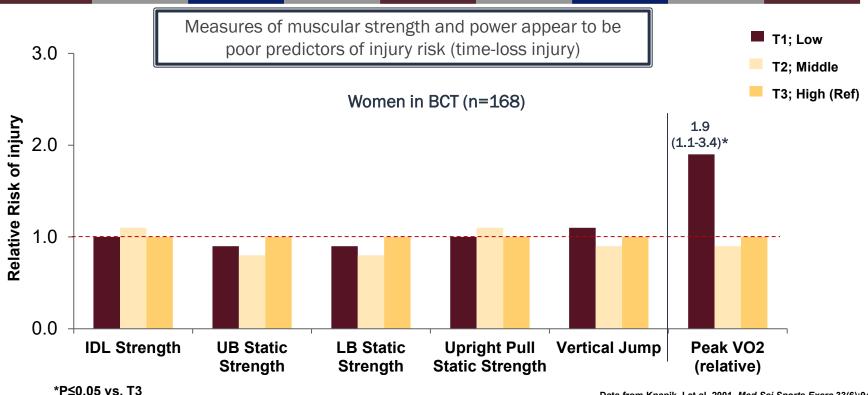

ALL ACTIVE DUTY ARMY INITIAL INJURIES, N = 653,051 Non-Mechanical Energy Other/Unspecified **Mechanical Energy** Injuries Iniuries Iniuries n=12.621 n=12.665 n=627.765 (2%) (2%) (96%) Cumulative Environmental Poisons Acute Trauma Non-Medical Abuse/ n=133.020 Microtrauma n=3.003 n=8.184 Environmental Complications Intentional n=494,745 (20%) (1%) (1%) n=1.478 n=5.239 n=3.176 (76%) (<1%) (1%) (1%) Heat & Sun Drugs MSK MSK Other reaction Thermal burns Unspecified/ n=1.213 n=2.492 n=71.465 n=457.861 to external n=1.435 multiple injuries (<1%) (<1%) (11%) (70%) cause (<1%) n=2.512 n=1.147 (<1%) Cold Toxins Non-MSK (<1%) Non-MSK n=416 n=944 Electrical n=61.555 n=36.884 (<1%) (<1%) n=34 Foreign Body (9%) (6%) Lack of essential (<1%) n=367 element Altitude/ Chemicals (<1%) n=153 n=6.027 Pressure Nuclear (<1%) (1%) n=89 radiation Medical (<1%) n=9 Accidents *MSK = damage to tissue(s) of the musculoskeletal (<1%) n=27 system (i.e., bone, cartilage, muscle, tendon, fascia, Lightning (<1%) joint, ligament, bursa, or synovium); Data source: n=6 Military Health System Data Repository (MDR): injuries (<1%)

Annual Injury Surveillance Report 2021 Summary; TIP No. 12-123-0123.


defined using the DCPH-A Taxonomy of Injuries

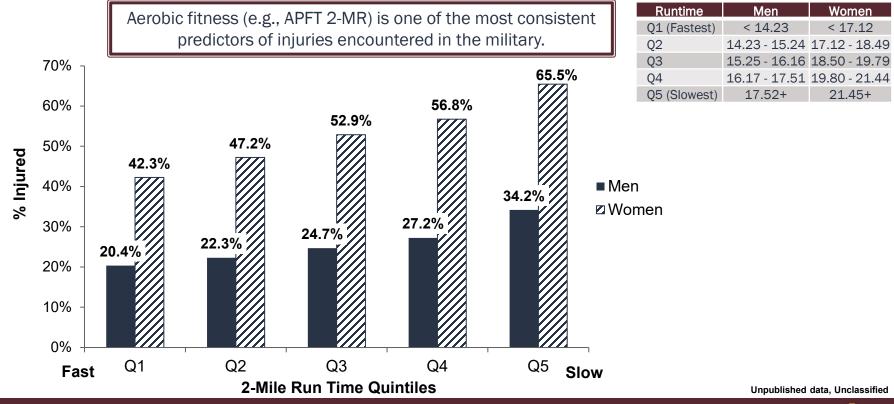
BMI (Body Composition surrogate) vs. Injury Incidence in Trainees

Muscular Strength and Power vs. Injury in Trainees (Men)



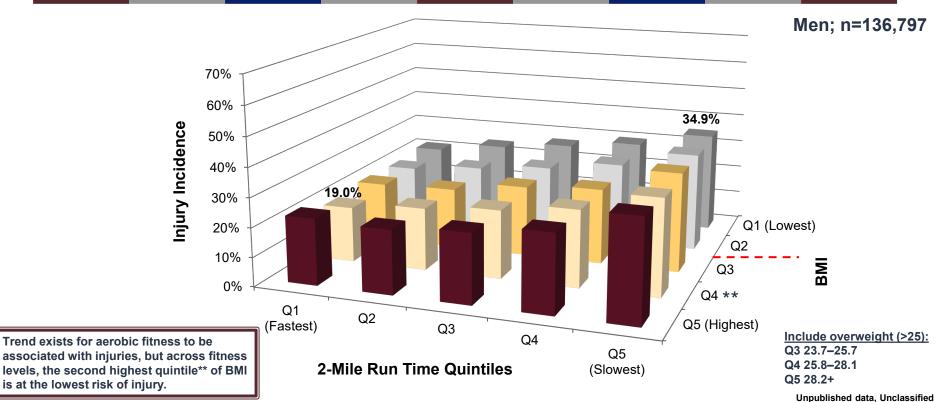
^{†0.08} T1 vs. T3; *P≤0.05 vs. T3

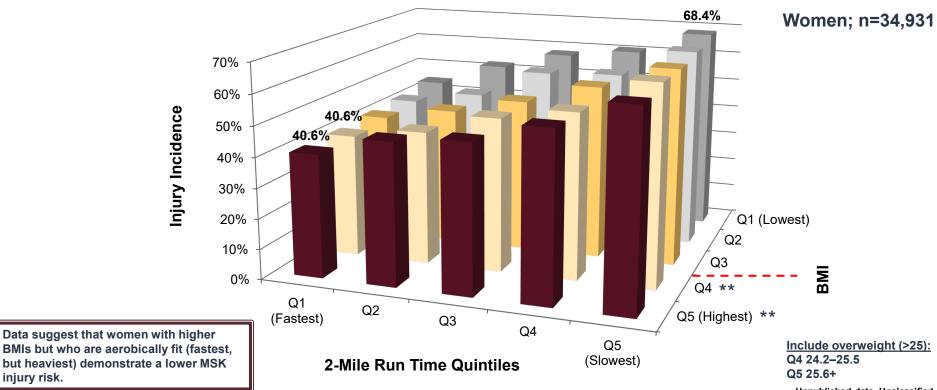
Data from Knapik J et al. 2001. Med Sci Sports Exerc 33(6):946-954.


Muscular Strength and Power vs. Injury in Trainees (Women)

Data from Knapik J et al. 2001. Med Sci Sports Exerc 33(6):946-954.

2-Mile Run Time and Injury Incidence for Men and Women


Interactions Between Fitness and BMI on Injury Risk



Injury Incidence Stratified by 2-Mile Runtime and BMI for Men in BCT ³⁴ (FY 2010–13)

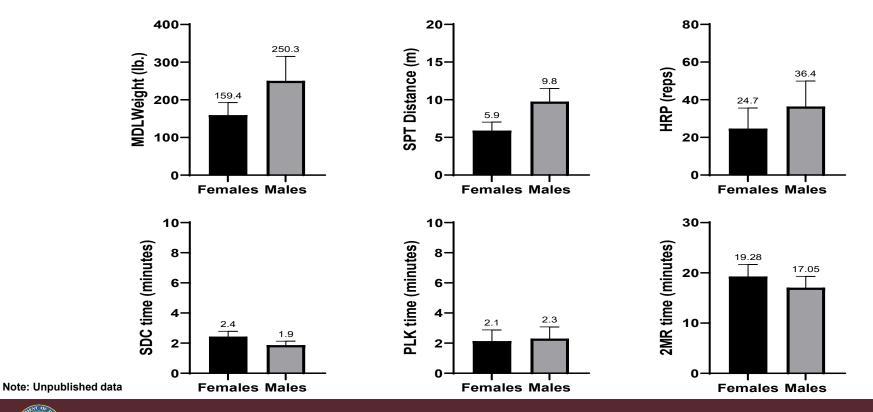
UNCLASSIFIED - Approved for public release; distribution unlimited. Injury Incidence Stratified by 2-Mile Runtime and BMI for Women in 35 BCT (FY 2010-13)

Unpublished data, Unclassified

injury risk.

What about newer fitness assessments (e.g., ACFT)?

Army Combat Fitness Test (ACFT)


- Updated measures for Army Physical Fitness/Performance (Official test of record as of 2022)
- Broader array* of physical fitness parameters than APFT
 - Muscular strength*
 - Muscular power*
 - Muscular endurance
 - Speed/agility*
 - Anaerobic fitness/endurance*
 - Aerobic fitness/endurance
- Advantages (unlike APFT):
 - Tied to combat-related fitness attributes
 - Basis for discriminating occupational fitness

https://www.army.mil/acft/

ACFT Performance by Sex

Univariate Logistic Regression: ACFT Performance with Future Cumulative MSKI **Deadlift, Power Throw, Hand-release Push-ups**

		Females	Females (n=3,300; injured=1,872 (57%))			(n=20,217; injur	ed=9,320 (46%))
			Injured			Injured	
	ACFT Event	Bin	n (%)	OR (95% CI)	Bin	n (%)	OR (95% CI)
		200-310	353 (55.8%)	Ref	340-390	1966 (48.5%)	Ref; ‡
		160-190	463 (56%)	1.01 (0.75-1.35)	270-330	1869 (44.5%)	<mark>0.85 (0.76-0.96)*</mark>
	3-RM Deadlift (lb.)	148-155	176 (55.2%)	0.98 (0.67-1.42)	240-260	1936 (45.5%)	0.89 (0.79-1.00)
	(101)	140-140	497 (59.7%)	1.18 (0.88-1.57)	190-235	1709 (45.1%)	<mark>0.87 (0.77-0.99)*</mark>
High Event		120-130	383 (55.6%)	0.99 (0.73-1.34)	120-180	1840 (47%)	0.94 (0.83-1.07)
Performance	Standing Power Throw (m)	6.9-11.7	333 (53.4%)	Ref	11.3-19.0	1990 (50.2%)	Ref; ‡
		6.1-6.8	393 (56.8%)	1.15 (0.85-1.55)	10.1-11.2	2012 (47.1%)	<mark>0.88 (0.78-1.00)*</mark>
•		5.5-6.0	417 (56.1%)	1.12 (0.83-1.51)	9.2-10.0	1859 (45%)	<mark>0.81 (0.72-0.92)*</mark>
Low Event		5.0-5.4	322 (55.9%)	1.11 (0.81-1.52)	8.2-9.1	1819 (44.5%)	<mark>0.80 (0.71-0.90)*</mark>
Performance		2.2-4.9	407 (61.2%)	1.38 (1.01-1.88)	1.0-8.1	1640 (43.6%)	<mark>0.77 (0.68-0.87)*</mark>
		35-60	357 (52.9%)	Ref; ‡	50-100	1744 (45.6%)	Ref; ‡
	Hand Release	26-34	376 (54.6%)	1.07 (0.80-1.44)	41-49	1820 (44.7%)	0.96 (0.85-1.09)
	Push-ups	21-25	274 (55.2%)	1.10 (0.80-1.52)	33-40	1847 (45%)	0.97 (0.86-1.10)
Note: Unpublished	(repetitions)	15-20	479 (58.9%)	1.28 (0.96-1.70)	24-32	1971 (46.2%)	1.02 (0.91-1.16)
data		2-14	386 (61.6%)	<mark>1.43 (1.05-1.94)*</mark>	1-23	1938 (49.1%)	<mark>1.15 (1.02-1.30)*</mark>

3-RM = three repetition maximum; **±** = significant *Type III* test result; Comparisons are for the specific binned group compared against the within-sex highest event performance group in each event.

Improving Health and Building Readiness. Anytime, Anywhere — Always

39

Univariate Logistic Regression: ACFT Performance with Future Cumulative MSKI Sprint-Drag-Carry, Plank, Two-mile Run

		Female	Females (n=3,300; injured=1,872 (57%))			Males (n=20,217; injured=9,320 (46%)		
			Injured			Injured		
	ACFT Event	Bin	n (%)	OR (95% CI)	Bin	n (%)	OR (95% CI)	
		0.8-2.2	347 (52.7%)	Ref , ‡	0.8-1.6	1785 (45.5%)	Ref , ‡	
	Consist Duca Course	2.2-2.3	373 (55.5%)	1.12 (0.83-1.51)	1.7-1.8	1629 (44.7%)	0.97 (0.85-1.10)	
	Sprint-Drag-Carry (time, min.)	2.4-2.5	396 (55.2%)	1.11 (0.82-1.49)	1.8-1.9	2096 (45.3%)	0.99 (0.88-1.12)	
	(ume, mm.)	2.5-2.8	429 (60.3%)	<mark>1.37 (1.01-1.84)*</mark>	1.9-2.1	1933 (46%)	1.02 (0.90-1.15)	
gh Event		2.8-6.0	327 (60.6%)	<mark>1.38 (1.00-1.90)*</mark>	2.1-6.0	1877 (49.1%)	<mark>1.15 (1.02-1.31)*</mark>	
rformance	Plank (time, min.)	2.7-5.3	362 (52.8%)	Ref , ‡	3.2-5.5	1703 (44.2%)	Ref , ‡	
		2.1-2.7	347 (55.4%)	1.11 (0.82-1.51)	2.3-3.2	1790 (44.4%)	1.01 (0.89-1.14)	
		1.7-2.0	417 (57.4%)	1.20 (0.90-1.61)	2.0-2.3	2070 (46%)	1.08 (0.95-1.21)	
w Event		1.5-1.7	330 (55.2%)	1.10 (0.81-1.50)	1.6-2.0	1905 (46.5%)	1.10 (0.97-1.24)	
rformance		0.3-1.5	416 (62.7%)	<mark>1.51 (1.11-2.04)*</mark>	0.3-1.5	1852 (49.5%)	<mark>1.24 (1.09-1.40)*</mark>	
		11.7-17.3	348 (51.9%)	Ref , ‡	10.7-15.0	1611 (42.6%)	Ref , ‡	
		17.3-18.7	357 (53%)	1.05 (0.78-1.41)	15.0-16.2	1761 (43.7%)	1.05 (0.92-1.19)	
	Two-mile Run (time, min.)	18.7-20.0	396 (54.8%)	1.13 (0.84-1.51)	16.3-17.5	1919 (45.3%)	1.12 (0.99-1.26)	
	(20.0-21.7	416 (60.2%)	<mark>1.40 (1.04-1.89)*</mark>	17.5-19.1	2071 (47.8%)	<mark>1.23 (1.09-1.39)*</mark>	
Note: Unpublished		21.7-40.0	355 (65.4%)	<mark>1.75 (1.27-2.42)*</mark>	19.1-40.0	1958 (51.1%)	<mark>1.41 (1.24-1.60)*</mark>	

<u>Improving Health</u> and Building Readiness. Anytime, Anywhere — Always

40

Multivariate Logistic Regression: ACFT Performance with Future Cumulative MSKI ⁴¹ Controlling for Age, %BF, and Previous Injuries

		Females (Females (n=3,300; n=1,872 injured (57%))			Males (n=20,217; n=9,320 injured (46%))		
		Performance	Injured		Performance	Injured		
	ACFT Event	Bin	n (%)	Adj OR (95% CI)	Bin	n (%)	Adj OR (95% CI)	
		200-310	353 (55.8%)	Ref, ‡	340-390	1966 (48.5%)	Ref	
		160-190	463 (56%)	0.91 (0.66-1.27)	270-330	1869 (44.5%)	0.94 (0.82-1.07)	
	3-RM Deadlift (lb.)	148-155	176 (55.2%)	0.85 (0.55-1.30)	240-260	1936 (45.5%)	1.01 (0.87-1.17)	
ligh Event	(10.)	140-140	497 (59.7%)	0.98 (0.68-1.42)	190-235	1709 (45.1%)	0.98 (0.83-1.15)	
erformance		120-130	383 (55.6%)	0.71 (0.47-1.07)	120-180	1840 (47%)	0.96 (0.80-1.15)	
	Otana dina Daman	6.9-11.7	333 (53.4%)	Ref, ‡	11.3-19.0	1990 (50.2%)	Ref, ‡	
		6.1-6.8	393 (56.8%)	1.21 (0.87-1.68)	10.1-11.2	2012 (47.1%)	0.91 (0.80-1.04)	
ow Event	Standing Power Throw (m)	5.5-6.0	417 (56.1%)	1.19 (0.85-1.67)	9.2-10.0	1859 (45%)	<mark>0.82 (0.72-0.94)*</mark>	
erformance	,	5.0-5.4	322 (55.9%)	1.16 (0.80-1.68)	8.2-9.1	1819 (44.5%)	<mark>0.83 (0.71-0.96)*</mark>	
		2.2-4.9	407 (61.2%)	<mark>1.56 (1.06-2.28)*</mark>	1.0-8.1	1640 (43.6%)	<mark>0.81 (0.69-0.95)*</mark>	
		35-60	357 (52.9%)	Ref	50-100	1744 (45.6%)	Ref	
	Hand-release	26-34	376 (54.6%)	1.01 (0.73-1.39)	41-49	1820 (44.7%)	0.99 (0.87-1.13)	
	Push-up	21-25	274 (55.2%)	0.96 (0.67-1.38)	33-40	1847 (45%)	0.99 (0.86-1.14)	
	(repetitions)	15-20	479 (58.9%)	1.08 (0.76-1.53)	24-32	1971 (46.2%)	0.99 (0.85-1.15)	
		2-14	386 (61.6%)	1.12 (0.76-1.67)	1-23	1938 (49.1%)	1.05 (0.89-1.25)	

Note: Unpublished data

3-RM = three repetition maximum; Adjusted Odds Ratio (Adj OR) was from multiple logistic regression model, accounting for all other variables in model; ‡ = significant *Type III* test result; Comparisons are for the specific binned group compared against the within-sex highest event performance group in each event.

Multivariate Logistic Regression: ACFT Performance with Future Cumulative MSKI ⁴² Controlling for Age, %BF, and Previous Injuries

		Females (n=3,300; n=1,872 injured (57%))		Males (n=20,217; n=9,320 injured (46%))			
		Performance	Injured		Performance	Injured	
	ACFT Event	Bin	n (%)	Adj OR (95% CI)	Bin	n (%)	Adj OR (95% CI)
		0.8-2.2	347 (52.7%)	Ref	0.8-1.6	1785 (45.5%)	Ref
	Constant Duran Course	2.2-2.3	373 (55.5%)	0.99 (0.71-1.38)	1.7-1.8	1629 (44.7%)	0.94 (0.82-1.07)
	Sprint-Drag-Carry (time, min.)	2.4-2.5	396 (55.2%)	0.93 (0.66-1.30)	1.8-1.9	2096 (45.3%)	0.94 (0.82-1.07)
High Event	()	2.5-2.8	429 (60.3%)	1.07 (0.74-1.53)	1.9-2.1	1933 (46%)	0.91 (0.79-1.06)
Performance		2.8-6.0	327 (60.6%)	0.94 (0.62-1.43)	2.1-6.0	1877 (49.1%)	0.95 (0.81-1.13)
		2.7-5.3	362 (52.8%)	Ref	3.2-5.5	1703 (44.2%)	Ref
	Plank	2.1-2.7	347 (55.4%)	1.03 (0.74-1.42)	2.3-3.2	1790 (44.4%)	0.97 (0.85-1.11)
Low Event	(time, min.)	1.7-2.0	417 (57.4%)	1.07 (0.77-1.48)	2.0-2.3	2070 (46%)	1.01 (0.88-1.15)
Performance	()	1.5-1.7	330 (55.2%)	0.94 (0.66-1.35)	1.6-2.0	1905 (46.5%)	1.04 (0.90-1.21)
		0.3-1.5	416 (62.7%)	1.17 (0.81-1.70)	0.3-1.5	1852 (49.5%)	1.01 (0.86-1.19)
		11.7-17.3	348 (51.9%)	Ref	10.7-15.0	1611 (42.6%)	Ref, ‡
	Two-mile Run	17.3-18.7	357 (53%)	0.94 (0.68-1.30)	15.0-16.2	1761 (43.7%)	1.03 (0.90-1.18)
	(time, min.)	18.7-20.0	396 (54.8%)	0.95 (0.68-1.32)	16.3-17.5	1919 (45.3%)	1.08 (0.94-1.24)
	()	20.0-21.7	416 (60.2%)	1.13 (0.78-1.62)	17.5-19.1	2071 (47.8%)	1.14 (0.98-1.32)
		21.7-40.0	355 (65.4%)	1.30 (0.86-1.97)	19.1-40.0	1958 (51.1%)	<mark>1.26 (1.07-1.49)*</mark>

Note: Unpublished data

Adjusted Odds Ratio (Adj OR) was from multiple logistic regression model, accounting for all other variables in model; \ddagger = significant *Type III* test result; Comparisons are for the specific binned group compared against the within-sex highest event performance group in each event.

Multivariate Logistic Regression: Previous Injury with Future Cumulative MSKI Controlling for Age, %BF, and ACFT performance

	Fema	les (n=3,300; n=1,8	872 injured (57%))	Males (n=20,217; n=9,320 injured (46%))			
Variable	Bin	Injured n (%)	Adj OR (95% CI)	Bin	Injured n (%)	Adj OR (95% CI)	
Previous Injury (60 days prior to ACFT)	No	1461 (52.7%)	Ref, ‡	No	7623 (42.6%)	Ref, ‡	
	Yes	411 (77.8%)	<mark>2.98 (2.38-3.72)*</mark>	Yes	1697 (73.3%)	<mark>3.49 (3.16-3.84)*</mark>	

Adjusted Odds Ratio (OR) was from multiple logistic regression model, accounting for all other variables in model (Age, BF, ACFT performance); ‡ = significant *Type III* test result; Comparisons are for the specific within-sex binned group compared against the referent (no injury) group.

Note: Unpublished data

43

Key Lessons/Takeaways (1 of 2)

- What does body composition tell us about an individual?
 - Bimodal greater health risks at low and high BMIs: high BMI is the larger risk factor with J-shaped curve
 - BMI related to body fat with disproportionate increase in fat mass: >27.5 kg/m²
- Physical performance trade-offs with higher BMIs (and more body fat)
 - Decreased aerobic capacity
 - Greater muscular strength and power
- Body composition and fitness influence injury risk/occurrence independently and in concert together
 - Low and high ends of BMI spectrum: slight bimodal relationship with injuries
 - Faster run times/higher aerobic fitness in particular: fewer injuries
 - Aerobically-fit Soldiers with high BMIs demonstrate lower injury incidence
 - Fitness event performance taking into account body composition, age, and prior injuries demonstrate sex-specific interactions and that prior injuries may be more important factor.

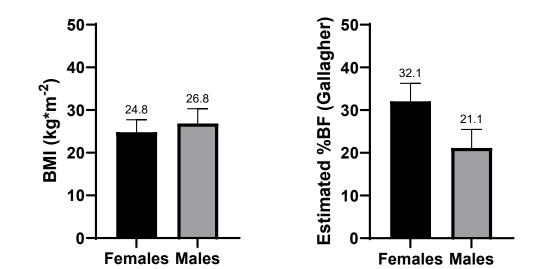
Key Lessons/Takeaways (2 of 2)

What do we do with this information/where next?

- Setting standards for body composition and fitness:
 - Needs to balance physical performance, health, and readiness requirements.
 - Needs to consider practicality, validity, reliability, and defensibility.
- Less emphasis should be placed on excluding individuals based on body composition alone, especially where tradeoffs may exist:
 - Individuals with higher BMIs demonstrate enhanced physical performance on tests/tasks assessing muscular strength, power, etc.
 - Individuals with higher BMIs that also demonstrate higher levels of aerobic fitness seem to be protected from injuries.

Any Questions?

Back-up slides



Body Composition (BMI, %BF) by Sex

Female (exclusions <10%); n=3,300							
	mean	SD		range			
BMI	24.8	2.9	16.3	-	38.4		
%BF (est.)	32.1	4.2	14.0	-	44.3		

Male (exclusions <3%) ; n=20,217							
	mean	SD		range			
BMI	26.8	3.5	17.2	-	43.25		
%BF (est.)	21.1	4.4	4.0	-	33.9		

Note: Unpublished data

Prior and Future MSKIs: Females

Table 6b. Injury Encounter post ACFT - Any MSK						
Days from ACFT to 1st Any MSK	Ν	%				
None	1,330	40.3				
less than 60 days	649	19.67	7			
60 to 180 days	678	20.55	59.7%			
181 to 365 days	643	19.48				

Post-ACFT

Pre-ACFT

Table 4. Injury Encounters prior to ACFT

	Ν	%
Any MSK inj within 60 days	569	17.24
LE MSK inj within 60 days	291	8.82
Any MSK inj within 180 days	1,270	38.48
LE MSK inj within 180 days	761	23.06

Table 7b. Injury Encounter post ACFT –	<mark>Acute MSK</mark>	

Days from ACFT to 1st Acute MSK	N	%	
None	2,803	84.94	
less than 60 days	92	2.79	ר
60 to 180 days	164	4.97	15.19
181 to 365 days	241	7.3	

Table 8b. Injury Encounter post ACFT - <mark>Cumulative MSK</mark>						
Days from ACFT to 1st Cumulative MSK	Ν	%				
None	1,428	43.27				
less than 60 days	606	18.36	7			
60 to 180 days	643	19.48	-56.7%			
181 to 365 days	623	18.88]			

Prior and Future MSKIs: Males

Post-ACFT

Table 6b. Injury Encounter post ACFT -	_		
Days from ACFT to 1st Any MSK	N	%	
None	10,354	51.21	
less than 60 days	3,001	14.84	7
60 to 180 days	3,375	16.69	48.8%
181 to 365 days	3,487	17.25	J

Table 7b. Injury Encounter post ACFT - Acute MSK

Days from ACFT to 1st Acute MSK	Ν	%
None	17,522	86.67
less than 60 days	522	2.58
60 to 180 days	855	4.23
181 to 365 days	1,318	6.52

Table 8b. Injury Encounter post ACFT - <mark>Cumulative MSK</mark>						
Days from ACFT to 1st Cumulative MSK	N	%				
None	10,897	53.9				
less than 60 days	2,738	13.54	1			
60 to 180 days	3,194	15.80	46.1%			
181 to 365 days	3,388	16.76				

Note: Unpublished data

Improving Health and Building Readiness. Anytime, Anywhere — Always

Pre-ACFT

Table 4. Injury Encounters prior to ACFT

	Ν	%
Any MSK inj within 60 days	2,531	12.52
LE MSK inj within 60 days	1,180	5.84
Any MSK inj within 180 days	5,801	28.69
LE MSK inj within 180 days	3,098	15.32

Univariate Logistic Regression: %BF and Age with Future Cumulative MSKI

	Female	Females (n=3,300; injured=1,872 (57%))			Males (n=20,217; injured=9,320 (46%))		
Variable	Bin	Injured n (%)	OR (95% CI)	Bin	Injured n (%)	OR (95% CI)	
Body Fat (%)	14.0-28.6	321 (49.7%)	Ref, ‡	4.0-17.6	1,567 (39.1%)	Ref, ‡	
(est.)	28.6-31.4	396 (55.5%)	1.26 (0.94-1.70)	17.6-20.4	1,672 (42.9%)	<mark>1.17 (1.03-1.32)*</mark>	
	31.4-33.3	349 (52.5%)	1.12 (0.83-1.51)	20.4-22.5	1,853 (45.4%)	<mark>1.29 (1.14-1.46)*</mark>	
	33.3-35.8	408 (62%)	1.65 (1.22-2.25)*	22.5-24.8	2,043 (49.3%)	<mark>1.51 (1.34-1.71)*</mark>	
	35.8-44.3	398 (64.5%)	1.84 (1.34-2.52)*	24.8-33.9	2,185 (53.6%)	1.80 (1.59-2.03)*	
Age	17-21	366 (56.1%)	Ref	17-21	1,455 (40.8%)	Ref, ‡	
	22-26	573 (53.9%)	0.91 (0.67-1.23)	22-26	2,638 (43.2%)	1.10 (0.97-1.26)	
	27-31	375 (55.8%)	0.99 (0.71-1.38)	27-31	1,907 (44.1%)	1.14 (1.00-1.31)	
	32-36	241 (54.2%)	0.92 (0.63-1.34)	32-36	1,440 (47.8%)	<mark>1.33 (1.14-1.54)*</mark>	
	37-41	194 (66.2%)	1.53 (0.98-2.39)	37-41	1,098 (55.7%)	1.82 (1.53-2.16)*	
	42-46	77 (65.8%)	1.50 (0.80-2.85)	42-46	515 (63.7%)	2.55 (1.99-3.25)*	
	47-51	34 (75.6%)	2.42 (0.82-7.10)	47-51	214 (63.5%)	2.52 (1.76-3.61)*	
	52+	12 (100%)	Undefined	52+	53 (52.5%)	1.60 (0.87-2.95)	

+ = significant *Type III* test result; Comparisons are for the specific within-sex binned group compared against the referent group (e.g., lowest body fat, youngest).

Note: Unpublished data

Univariate Logistic Regression: Previous Injuries with Future Cumulative MSKI

	Fe	Females (n=3,300; injured=1,872 (57%))			Males (n=20,217; injured=9,320 (46%))		
Variable	Bin	Injured n (%)	OR (95% CI)	Bin	Injured n (%)	OR (95% CI)	
Previous Injury (60 days prior to ACFT)	No	1,461 (52.7%)	Ref, ‡	No	7,623 (42.6%)	Ref, ‡	
	Yes	411 (77.8%)	<mark>3.15 (2.53-3.92)*</mark>	Yes	1,697 (73.3%)	<mark>3.70 (3.36-4.08)*</mark>	
Previous Injury (180 days prior to ACFT)	No	975 (46.6%)	Ref, ‡	No	5,768 (38.9%)	Ref, ‡	
	Yes	897 (74.3%)	<mark>3.30 (2.83-3.86)*</mark>	Yes	3,552 (65.8%)	<mark>3.01 (2.82-3.21)*</mark>	

+ = significant *Type III* test result; Comparisons are for the specific within-sex binned group compared against the referent group (e.g., no injury).

Note: Unpublished data

Multivariate Logistic Regression: %BF and Age with Future Cumulative MSKI

	Female	Females (n=3,300; n=1,872 injured (57%))			Males (n=20,217; n=9,320 injured (46%))		
Variable	Bin	Injured n (%)	Adj OR (95% CI)	Bin	Injured n (%)	Adj OR (95% CI)	
	14.0-28.6	321 (49.7%)	Ref, ‡	4.0-17.6	1,567 (39.1%)	Ref, ‡	
Dedu Fet (0/)	28.6-31.4	396 (55.5%)	1.21 (0.89-1.65)	17.6-20.4	1,672 (42.9%)	1.08 (0.95-1.24)	
Body Fat (%) (est.)	31.4-33.3	349 (52.5%)	1.06 (0.77-1.45)	20.4-22.5	1,853 (45.4%)	1.11 (0.97-1.27)	
	33.3-35.8	408 (62%)	1.37 (0.97-1.93)	22.5-24.8	2,043 (49.3%)	<mark>1.16 (1.01-1.34)*</mark>	
	35.8-44.3	398 (64.5%)	<mark>1.50 (1.03-2.18)*</mark>	24.8-33.9	2,185 (53.6%)	<mark>1.26 (1.07-1.47)*</mark>	
	17-21	366 (56.1%)	Ref	17-21	1,455 (40.8%)	Ref, ‡	
	22-26	573 (53.9%)	0.93 (0.67-1.28)	22-26	2,638 (43.2%)	1.03 (0.90-1.18)	
Age (y)	27-31	375 (55.8%)	0.98 (0.68-1.41)	27-31	1,907 (44.1%)	1.02 (0.88-1.19)	
	32-36	241 (54.2%)	0.87 (0.58-1.30)	32-36	1,440 (47.8%)	1.14 (0.97-1.35)	
	37-41	194 (66.2%)	1.33 (0.83-2.15)	37-41	1,098 (55.7%)	<mark>1.56 (1.29-1.89)*</mark>	
	42-46	77 (65.8%)	1.27 (0.64-2.51)	42-46	515 (63.7%)	2.08 (1.60-2.72)*	
	47-51	34 (75.6%)	1.77 (0.57-5.47)	47-51	214 (63.5%)	<mark>2.06 (1.41-3.02)*</mark>	
	52+	12 (100%)	Undefined	52+	53 (52.5%)	1.29 (0.68-2.46)	

Adjusted Odds Ratio (Adj OR) was from multiple logistic regression model, accounting for all other variables in model; \ddagger = significant *Type III* test result; Comparisons are for the specific within-sex binned group compared against the referent group (e.g., lowest body fat, youngest).

Note: Unpublished data

